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Abstract. We analyze the production of φ mesons in πN and NN reactions in the near-threshold region,
using throughout the conventional “non-strange” dynamics based on such processes which are allowed by
the non-ideal ω − φ mixing. We show that the occurrence of the direct φNN interaction may show up in
different unpolarized and polarization observables in πN → Nφ reactions. We find a strong non-trivial
difference between observables in the reactions pp→ ppφ and pn→ pnφ caused by the different role of the
spin singlet and triplet states in the entrance channel. A series of predictions for the experimental study
of this effect is presented.

PACS. 13.75.-n Hadron-induced low- and intermediate-energy reactions and scattering (energy ≤10 GeV)
– 14.20.-c Baryons (including antiparticles) – 21.45.+v Few-body systems

1 Introduction

The present interest in the φ meson production in dif-
ferent elementary reactions is related to the strangeness
degrees of freedom in the nucleon. Since the φ meson is
thought to consist mainly of strange quarks, i.e. ss̄, with
a rather small contribution of the light u and d quarks,
its production should be suppressed if the entrance chan-
nel does not possess a considerable admixture of strange-
ness. Indeed, the recent experiments on the proton anni-
hilation at rest (cf. [1] for references and a compilation
of data) point to a large apparent violation of the OZI
rule [2], which is interpreted [1] as a hint to an intrin-
sic ss̄ component in the proton. However, the data can
be explained as well by modified meson exchange models
[3] without introducing any strangeness component in the
nucleon or OZI violation mechanisms. On the other hand,
the analysis of the πN sigma term [4] suggests that the
proton might contain a strange quark admixture as large
as 20%. Thus this issue remains controversial. Therefore
it is tempting to look for other observables [1,5,6] that
are sensitive to the strangeness content of the nucleon.
Most of them are related to a possible strong interference
of delicate ss̄ knock-out and shake-off amplitudes and the
“non-strange” amplitude which is caused by OZI rule al-
lowed processes, or by processes wherein the standard OZI
rule violation comes from the φ− ω mixing.

As shown in [6], through this interference the polar-
ization observables of the φ photo-production process are

sensitive even to a rather small strangeness admixture
in the proton. However, the only 3,1S ss̄ configurations
may be seen in a such process. The other configurations,
such as 3,1P , are suppressed by the selection rules and/or
form factors. Contrary to this, Ellis et al. [7] argue that
the possibly dominant 3P0 configuration might be seen in
hadronic reactions.

Obviously, reliable information about the hidden
strangeness manifestation in the φ production in πp and
NN reactions can be obtained only when the conven-
tional, i.e. non-exotic, amplitudes have been understood
quantitatively. This is the objective of the present work.
The dominant conventional processes in πN andNN reac-
tions are depicted in Figs. 1 and 2, where (a) is the mesonic
exchange process being allowed by the finite φρπ coupling
strength and (b) is the direct φ radiation from the nucleon
legs, which is proportional to the finite φNN interaction
strength. It should be emphasized that the process 1a is
a subprocess in the diagram 2a, while the process 1b is a
subprocess in the diagram 2b, when the exchanged boson
is a pion.

While the diagrams in Figs. 1 and 2 look like usual
Feynman diagrams it should be stressed they give a guid-
ance of how to obtain from an interaction Lagrangian
of hadronic fields a covariant parameterization of observ-
ables in strict tree level approximation. Additional ingre-
dients are needed to achieve an accurate description of
data within such a framework. In particular, the vertices
needs to be dressed by form factors.
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Fig. 1. Diagrammatic representation of the πN → Nφ reac-
tion mechanisms: (a) meson exchange diagram with φ emission
from the φρπ vertex, (b) direct φ emission from the φNN ver-
tex in Compton like diagrams

Fig. 2. Diagrammatic representation of the NN → NNφ re-
action mechanisms: (a) meson exchange diagram with φ emis-
sion from the internal meson conversion in the φρπ vertex,
(b) direct φ emission from nucleon legs. The zig-zag lines de-
pict effective boson exchange. Exchange diagrams are not dis-
played

The early theoretical studies [8,9] show, indeed, that
predictions for hadronic observables are very sensitive to
the parameters of the monopole form factors which can
not be fixed unambiguously without adjustments relying
on the corresponding experimental data. In our case one
can rely on the recent measurement of the ratio of the to-
tal cross sections of φ and ω production in pp reactions
studied by the DISTO Collaboration at SATURNE at
Tlab = 2.85 GeV as well as on the φ angular distribu-
tion in the pp → ppφ reaction [10] and on the total cross
section [11].

In the (sub)threshold region also in heavy-ion reac-
tions the φ production data is accessible via the K+K−

decay channel studied with the 4π detector FOPI at SIS in
GSI/Darmstadt [12]. However, here an understanding of
elementary hadronic reactions serves as a prerequisite for
interpreting the data. Rather the upcoming proton and
pion beam experiments with the HADES detector system
at SIS in GSI [13] offer a chance to enlarge the data base.
In particular, HADES can identify the φ also via the e+e−

channel.
Finally we mention that for pion-induced reactions at

the proton also near-threshold data for the φ production
are available [14].

An important step towards an understanding of the
structure of the “non-strange” pp → ppφ reaction mech-
anisms was made recently [15]. The focus of [15] is the
determination of the parameters of the direct φNN inter-
action, thus reducing the above mentioned uncertainties,
by analyzing the combined the pp → ppω and pp → ppφ

reactions and the corresponding DISTO data [10] at a
given beam energy; for the reaction pp → ppω just the
same mechanism is assumed as those for pp → ppφ, as
shown in Fig. 2. Clearly, at one given beam energy the
excess energies for both reactions are quite different.

In this paper we therefore attempt a different approach
with a similar goal. We reduce the uncertainties of the
reaction mechanism by a combined study of the to each
other related reactions pp → ppφ and π−p → nφ using
the known data within the same interval of excess energies
of 20 − 100 MeV [11,14]. For the absolute normalization
of the angular distribution in pp → ppφ [10] we use the
recently published total cross sections of the reaction pp→
ppφ [11]. It turns out that this value is compatible, within
given error bars, with an extrapolation of the previously
measured ratio of the total cross sections of pp → ppφ
to pp → ppφ reactions, σφ/σω = (3.7 ± 0.5) × 10−3 at
Tlab = 2.85 GeV [10], by normalizing it to the old bubble
chamber data for σω at various excess energies [16]. The
extrapolated value of the cross section differs from the
new value [11], thus influencing to some extent adjusted
parameters.

In comparison with previous works we are doing the
next step towards an understanding of the dynamics of φ
production in hadronic reactions. We present a systemat-
ical analysis of π−p → nφ, pp → ppφ and pn → pnφ re-
actions in the near-threshold region where the destructive
interferences between the two mechanisms (a) and (b) in
Figs. 1 and 2 are essential. We are going to show that basi-
cally there are two different sets of the model parameters.
One of them corresponds to the case when the mesonic
exchange channel (a) is dominant for the π−p → nφ re-
action (Fig. 1), and in the second case the direct emis-
sion mechanism (b) is dominant. For both sets of solu-
tions we calculate the total and differential cross sections
and spin density matrix, responsible for the φ → e+e−

and φ → K+K− decay angular distributions and show
in which observables the direct φNN interaction might
be clearly manifest. We present also a combined analy-
sis of pp → ppφ and pn → pnφ reactions at a finite ex-
cess energy with taking into account the final state in-
teraction and analyze the deviation of predicted observ-
ables from the pure threshold values which is important
for the future understanding of the role of the internal
strangeness degrees of freedom in the nucleon. For this aim
we study the beam-target spin asymmetry and the rela-
tive role of the singlet and triplet states in the entrance
channel.

Our paper is organized as follows. In Sect. 2, we de-
fine the kinematical variables and formulae for calculating
the cross sections and polarization observables. The basic
amplitudes for the mechanisms illustrated in Figs. 1 and 2
are given explicitly in Sect. 3. In Sect. 4 we discuss results
of numerical calculations and predictions. The summary is
given in Sect. 5. In the Appendix we describe the formal-
ism for the enhancement factors of final state interaction
within the framework of the Jost function and the effective
phase-equivalent potentials.



A.I. Titov et al.: Production of φ mesons in near-threshold πN and N N reactions 545

2 Observables

The differential cross section of the reaction π−p → φn
(cf. Fig. 1) has the obvious form

dσ

dΩφ
=

1
64π2s

|q|
|pπ|
|T(1)|2, (1)

where pπ = (Eπ, pπ) and q = (Eφ,q) are the four-
momenta of the pion and the φ meson in the center of
mass system (c.m.s.); |T(1)|2 means average and sum over
the initial and final spin states, respectively.

The differential cross section of φ production in the
reaction a + b → c + d + φ, where a, b and c, d label the
incoming and outgoing nucleons (cf. Fig. 2), is related to
the invariant amplitude T(2) as

dσ =
1

2(2π)5
√
s(s− 4M2

N )
|T(2)|2

dpc
2Ec

dpd
2Ed

dq
2Eφ

· δ(4)(Pi − Pf ). (2)

where pn = (En, pn) with n = a, b, c, d are the four-
momenta of the nucleons in the c.m.s.,

√
s = Ea + Eb

is the total c.m.s. energy, Pi,f are the total four-momenta
of the initial or final states. Hereafter θ denotes the polar
φ meson angle and Ω is its solid angle. We use a coordi-
nate system with z ‖ pa, y ‖ pa×q. Among the five inde-
pendent variables for describing the final state we choose
Eφ, Ω and Ωc. Then the energy Ec of particle c is defined

by Ec = AB−C
√
B2−M2

N (A2−C2)

A2−C2 , with A = 2(
√
s − Eφ),

B = s− 2Eφ
√
s+M2

φ, C = 2|q| cos θqpc , Finally, the five-
fold differential cross section reads

d5σ

dEφdΩdΩc
=

1
8(2π)5

√
s(s− 4M2

N )
|T(2)|2

· |q| |pc|2
|A |pc|+ CEc|

. (3)

The total and/or partially differential cross sections are
found by integration over the available phase space.

In this paper we consider two polarization observables.
One of them is the spin density matrix which describes the
spin structure of the outgoing φ meson,

ρrr′ =

∑
β Tr,β T

∗
r′,β∑

r,β Tr,β T
∗
r,β

, (4)

where r ≡ mφ = ±1, 0 are the spin projections of the φ
meson, and β denotes a set of unobserved quantum num-
bers. The spin density defines the angular distribution in
φ → e+e− and φ → K+K− decays, which has a simple
form in a system where the φ meson is at rest (for de-
tails see [9]). The decay angles Θ, Φ are defined as polar
and azimuthal angles of the direction of flight of one of
the decay particles in the φ meson’s rest frame. The de-
cay distributions integrated over the azimuthal angle Φ,
W(cosΘ), depend only on the diagonal matrix elements

ρ00, ρ11 = ρ−1−1, normalized as ρ00 + 2ρ11 = 1, according
to

W(cosΘ) =
3

2(B + 3)
(
1 +B cos2Θ

)
, (5)

where the φ decay anisotropies B read

BK
+K− = −1− 3ρ00

1− ρ00
, Be

+e− =
1− 3ρ00

1 + ρ00
. (6)

To exclude the kinematical dependence of ρ00 or B on the
φ meson production angle, we choose the quantization axis
along the z direction (in the φ rest system), and using the
corresponding Wigner rotation functions d······(χ) one gets
the amplitudes Tr,β in (4) by

T zmφ, β =
∑
λ,β′i

T c.m.s.λ, β′ d1
λ,mφ

(χφ)
∏
i

d
1
2
β′i,βi

(χi), (7)

where only χφ = −θ is important, while the other χi’s
disappear in (4).

Another polarization observable is the beam-target
asymmetry in the NN → NNφ reactions which is related
to the nucleon spin states via

CBT =
dσ(Si = 1)− dσ(Si = 0)
dσ(Si = 1) + dσ(Si = 0)

, (8)

where Si is the total spin in the entrance channel. It is
important to note that spin and parity conservation ar-
guments result in a precise model independent prediction
[17] for the beam - target asymmetry: CBT = 1 for the
pp → ppφ reaction at the threshold. In the pn → pnφ re-
action the asymmetry depends on the relative weights of
the triplet and singlet states in the entrance channel.

3 Basic amplitudes

Basically, our consideration in this section is similar to the
previous study [8] (for the pure mesonic exchange contri-
butions depicted in Figs. 1a and 2a) and to the models [9,
15] for both channels shown in Figs. 1 and 2. The differ-
ence between this work and previous ones is in the differ-
ent form of cut-off form factors for the off-shell nucleons
in direct φ emission (cf. Figs. 1b and 2b) and a different
choice of the cut-off parameters in πN and NN interac-
tions which we will discuss below in detail. In spite of
the mentioned similarity, for completeness in discussing
our predictions for the set of observables which have not
been considered before, in this section we display the main
formulae which define the basic amplitudes. The meson-
nucleon and the φρπ interaction Lagrangians read in stan-
dard notation

LMNN = −igπNN N̄γ5τπN

−gρNN
(
N̄γjτNρ

j − κρ
2MN

N̄σjlτN∂lρj

)
−gφNN

(
N̄γjNφ

j − κφ
2MN

N̄σjlN∂lρj

)
, (9)

Lφρπ = gφρπ ε
jikl ∂jφi Tr(∂kρlπ), (10)
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where Tr(ρπ) = ρ0π0 + ρ+π− + ρ−π+, and bold face let-
ters denote isovectors. All coupling constants with off-
shell meson are dressed by monopole form factors [18]
Fm = (Λ2

m − M2
m)/(Λ2

m − k2
m), where km is the four-

momentum of the exchanged meson with mass Mm. Fol-
lowing the scheme of the meson photo-production [19] we
assume that φNN vertices must be dressed by form fac-
tors for off-shell virtual nucleons. But this might result in
a violation of the transversality of the amplitude with re-
spect to the φ meson field. To avoid this problem we use
the prescription of [19] and parameterize the product of
the two form factors appearing in the left and the right
diagrams in Figs. 1b and 2b in a symmetrical form

FN (pL, pR) =
1
2

(
Λ4
N

Λ4
N + (p2

L −MN )2

+
Λ4
N

Λ4
N + (p2

R −MN )2

)
; (11)

here pL (pR) is the four-momentum of the virtual nucleon
in the left (right) diagrams in Figs. 1b and 2b, and MN

stands for the nucleon mass.

3.1 πN → Nφ reaction

The invariant amplitude for the meson exchange channel
(a) in Fig. 1 reads

T(1a)λ = KπN εijkl [ū(pc)Γρ l(kρ)u(pa)] qikk ε∗λj Iπ,(12)

where

Γ iρ(k) = γi + i
κρ

2MN
σij kρ j , (13)

KπN (kρ) = −gρNN gφρπ
k2
ρ −M2

ρ

Λ2
ρNN −M2

ρ

Λ2
ρNN − k2

ρ

Λρ 2
φρπ −M2

ρ

Λρ2φρπ − k2
ρ

(14)

with kρ = pc−pa as the virtual ρ meson’s four-momentum;
ελj is the φ meson polarization (λ) four-vector, Iπ denotes
the isospin factor being equal to

√
2 (1) for a π− (π0) me-

son in the entrance channel, and the nucleon spin indices
are not displayed; i, j · · · are Lorentz indices, and γi and
u denote Dirac matrices and bispinors.

The invariant amplitude for the direct radiation chan-
nel (b) in Fig. 1 has the following form

T(1b)λ = igφNN gπNN ū(pc)

·
[
Γ iφ(−q) 6pL +MN

p2
L −M2

N

+
6pR +MN

p2
R −M2

N

Γ iφ(−q)
]

· ū(pc) ε∗λi Iπ FN (pL, pR), (15)

where Γ iφ(q) and FN are defined by (13) and (11), respec-
tively, and pL = pa − q and pR = pc − q.

3.2 NN → NNφ reaction

The total invariant amplitude of meson exchange diagrams
(a) in Fig. 2 with internal meson conversion is the sum of
4 amplitudes

T(2a)αλ = ξ1
αT(2a)λ[ab; cd] + ξ2

αT(2a)λ[ab; dc]

+ ξ3
αT(2a)λ[ba; dc] + ξ4

αT(2a)λ[ba; cd] (16)

with ξ1
pp = ξ3

pp = −ξ2
pp = −ξ4

pp = 1, ξ1
pn = ξ3

pn = −1,
ξ2
pn = ξ4

pn = −2. The last two terms stem from the anti-
symmetrization or from charged meson exchange in pp or
pn reactions, respectively1. The first term in (16) for the
pp reaction with φ polarization λ reads

T(2a)λ[ab; cd] = KNN [ū(pd) γ5 u(pb) ]

·
[
ū(pc)Γ jρ (k)u(pa) εijklkiρ q

k
φε
∗ l
λ

]
,(17)

with

KNN (k2
π, k

2
ρ) = − gπNN gρNN gφρπ

(k2
π −M2

π)(k2
ρ −M2

ρ )
Λ2
πNN −M2

π

Λ2
πNN − k2

π

·
Λ2
ρNN −M2

ρ

Λ2
ρMN − k2

ρ

Λρ 2
φρπ −M2

ρ

Λρ2φρπ − k2
ρ

Λπ 2
φρπ −M2

π

Λπ2
φρπ − k2

π

.

(18)

The amplitude of direct φ meson emission from the nu-
cleon legs according to Fig. 2b is calculated similarly to
the real or virtual photon bremsstrahlung [20,21] in the
few GeV region. The internal zig-zag lines in Fig. 2b cor-
respond to a suitably parameterized NN interaction in
terms of an effective two-body T -matrix which is writ-
ten in the form of the one-boson exchange model (OBE)
with effective coupling constants and cut-off parameters
and may be interpreted as effective π, ω, ρ, σ meson ex-
changes. We would like to stress that this is an effective
dynamical model which is appropriate in the few GeV re-
gion and which is different from the OBE model in the
conventional sense. This model has been applied success-
fully to different reactions [20–22] and this encourages us
to employ it for the φ production too.

The total amplitude for the process (b) in Fig. 2 con-
sists of 2·8 (2·6) contributions for pp (pn) interactions and
has a similar structure as (16) (with ξ1

pn = ξ3
pn = 1, ξ2

pn =
ξ4
pn = 0, for σ, ω exchanges), where T [ab; cd] now reads

T(2b)λ[ab; cd] = −gφNN ε∗λi [ū(pd)V mu(pb)]×∑
m=π,σ,ρ,ω

[−iDm] ū(pc)

·
[
V m
6pL +MN

p2
L −M2

N

Γ iφ(−q) + Γ iφ(−q) 6pR +MN

p2
R −M2

N

V m
]
u(pa).

(19)
1 In [9] we used a convention with ξ2

pn = ξ4
pn = 2, which,

however, does not change our threshold prediction for the ratio
of the total cross sections in pn and pp interaction made there
without the final state interactions.
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Here, V m and Dm are effective coupling vertices and prop-
agators of the two-body T matrix, respectively,

Dπ,σ =
i

k2 −M2
π,σ

, Dρ,ω
kl = −i

gkl − kkklM−2
ρ,ω

k2 −M2
ρ,ω

, (20)

V π = −iGπNNγ5,

V σ = GσNN , (21)

V iρ,ω(k) = −Gρ,ω NN Γ iρ,ω,

where k is the four momentum of the virtual meson m
and GmNN is the vertex function which includes the cor-
responding cut-off form factor. The numerical values of
the GmNN are taken from [20,22].

In the near-threshold region the relative velocity of the
outgoing nucleons is small which might result in a strong
final state interaction (FSI) between them. If the energy
excess is a few MeV up to a few tens MeV then one can
consider only the s-wave interaction and account for the
final state interaction in terms of the enhancement factors
by renormalizing the basic amplitude correspondingly. For
instance, for the pn reaction we get

Tpn[ab; cd]→ Tpn[ab; cd](I0pn δ−mcmd+I1pn δmcmd), (22)

where mc,md are the spin projections of the nucleons in
the final state, and I0, I1 are the singlet and triplet en-
hancement FSI factors, which are calculated within the
Jost function and the phase-equivalent potentials formal-
ism, which we describe in detail in Appendix A. The calcu-
lation shows that the singlet enhancement factor is much
greater than the triplet one, i.e. |I0|2 − 1À |I1|2 − 1 ' 0
and greater than the corresponding factors of higher par-
tial waves. Thus, for the pp interaction we use

Tpp[ab; cd]→ Tpp[ab; cd](I0pp δ−mcmd+δmcmd), (23)

reminding that at the threshold the pp triplet final state
is exactly zero. I0pn and I0pp are different which reflects
the difference in the corresponding effective radii and the
scattering lengths. Note that the mutual FSI of the φ and
the outgoing nucleons is assumed to be negligible.

In calculating the cross sections and the spin density
matrix, squares and bilinear forms of the FSI-corrected
amplitudes need to be evaluated numerically.

4 Results

4.1 Fixing parameters

The parameters of the two-body T matrix for the direct φ
emission depicted in Fig. 2b are taken from [20,22], where
a quite reasonable agreement with data of different elastic
and inelastic NN reactions is found.

The coupling constant gφρπ is determined by the φ→
ρπ decay. The recent value Γ (φ → ρπ) = 0.69 MeV re-
sults in |gφρπ| = 1.10 GeV−1. The SU(3) symmetry con-
sideration [15,23] predicts a negative value for it. Thus,
gφρπ = −1.10 GeV−1.

The remaining parameters of the meson exchange am-
plitudes for the processes in Figs. 1a and 1b are taken
from the Bonn model as listed in Table B.1 (Model II) of
[18].

The yet undetermined parameters are: the cut-off pa-
rameters for the virtual mesons in the φρπ vertex, Λπφρπ
and Λρφρπ, the cut-off ΛN in (11), and the parameters of
the φNN interaction, gφNN and κφ. We can reduce the
number of parameters by making the natural assumption
Λπφρπ = Λρφρπ based on the symmetry of the virtual mesons
in the φρπ vertex [15]. The next consideration is related
to the tensor coupling κφ. Based on the φ − ω similarity
we do not expect a large value for it and in all our subse-
quent calculations we employ the theoretical estimate [24]
κφ = 0.2 as an upper limit.

Even after that we have three free parameters being
gφNN , Λρφρπ and ΛN . For gφNN the SU(3) symmetry pre-
dicts [25]

gφNN = −tg∆θV gωNN , (24)

where ∆θV is the deviation from the ideal ω − φ mixing
angle. It is responsible for the “standard” OZI rule viola-
tion, and in general, it depends on the method of its de-
termination (Gell-Mann–Okubo linear or quadratic mass
formulae, radiative decays, say φ(ω) → γπ, etc.). Using
the quadratic Gell-Mann–Okubo mass formula one gets
∆θV = 3.70. Sometimes another relation is used, e.g.

gφNN = −3 sin ∆θV gρNN , (25)

which is obtained from the SU(3) relation [25]

gωNN =
3F −D
F +D

cos∆θV gρNN , (26)

and (24) with the assumption D/F = 0 in the SU(3) vec-
tor meson octet. Using the known values for g2

ρNN/4π =
0.7 − 1.3 [18] and g2

ωNN/4π = 22 − 24 [18], one may ob-
tain −gφNN = 0.57 − 0.65 and −gφNN = 1.07 − 1.09 for
the expressions (25) and (24), respectively. On the other
hand, the theoretical estimates of [24] give gφNN = −0.24.
Thus, we can conclude that even using the standard OZI
rule violation (thought non-ideal ω−φ mixing) one is left
with estimated values of gφNN within a quite large inter-
val. The possible hidden strangeness in a nucleon may even
increase this interval. In this paper we restrict ourselves to
the standard OZI rule violation mechanisms and analyze
consequences of varying −gφNN in the region 0.0–1.0.

The negative coupling constant gφNN results in a de-
structive interference between meson exchange amplitudes
(a) and direct emission (b) in Figs. 1 and 2. Analyzing
the unpolarized π−p→ nφ reaction, based on the data of
[14], we find that the yet unconstrained three parameters
gφNN , Λρφρ, ΛN become related to each other as Λρφρπ =
Λρφρπ(gφNN , ΛN ) by the constrains given by the data, and
two solutions emerge for this dependence: (i) σ(a) > σ(b)

and (ii) σ(a) < σ(b), where σ(a,b) are the total cross sec-
tions for the meson exchange process (a) and the direct
φ emission (b) calculated separately. These solutions are
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Fig. 3. Solutions for the function Λρφρπ = Λρφρπ(gφNN , ΛN ); left panel: σ(a) > σ(b), right panel: σ(a) < σ(b). The thin straight
solid line in the left panel corresponds to gφNN = 0. Further explanations are given in the text

Fig. 4. The total cross section for the π−p → nφ reaction for the parameters sets A, B, C (left, middle, right panels) as a

function of the energy excess ∆s
1
2 . Data from [14]

displayed in Fig. 3 for several values of gφNN as discussed
above.

In order to constrain one more free parameter we an-
alyze also the cross section dσ/dΩ for the pp → ppφ re-
action, using simultaneously the DISTO data [10,11], i.e.
the angular distribution [10] (we remind that in our no-
tation Ω is the φ meson solid angle) and the total cross
section [11], respectively. For this aim we fix the absolute
normalization of the angular distribution dσ/dΩ given in
[10] by making use of the recently published the total cross
section [11]. As a result we get the fat dots in Fig. 3. The
minimum values for −gφNN are 0.07 (for σ(a) > σ(b)) and
0.60 (for σ(a) < σ(b)), respectively at ΛN → ∞. For both
solutions we find that increasing values of |gφNN | results
in decreasing values of ΛN leaving the total cross section
or “integrated” strength of the φNN interaction on the
same level.

To explore in more detail the relative importance of the
direct φNN interaction we now employ three parameter
sets; two of them correspond to the σ(a) > σ(b) solution
and the third one to σ(a) < σ(b):
set A: gφNN = −0.24 [24], Λρφρπ = 1.34 GeV, ΛN = 1.065
GeV (σ(a) > σ(b)),
set B: gφNN = −0.8, Λρφρπ = 1.34 GeV, ΛN = 0.715 GeV
(σ(a) > σ(b)),

set C: gφNN = −0.8, Λρφρπ = 1.60 GeV, ΛN = 1.99 GeV
(σ(a) < σ(b)).
In the sets B and C we choose −gφNN close to its upper
limit as predicted by SU(3) symmetry.

Results of our calculation of the total cross section
for the π−p → nφ reaction for these parameter sets are
shown in Fig. 4 as a function of the energy excess ∆s

1
2 ≡

s
1
2 − s0

1
2
πN with s0πN = (MN + Mφ)2. The contribution

of the meson exchange channel (a) is displayed separately
by the dot-dashed line, and the direct emission by the
nucleon line (b) is depicted by the dashed line. Clearly
seen is the strong destructive interference of the channels
(a) and (b), in particular for the set C.

In Figs. 5 and 6 we display results of our calculations
for dσ/dΩ for the pp → ppφ reaction together with the
available data [10,11] for the parameter sets B and C,

respectively, at ∆s
1
2 = s

1
2 −s0

1
2
NN = 82 MeV with s0NN =

(2MN +Mφ)2. The results for the set A are very similar to
that of the set B and we do not separately display them
here. Interestingly, in all parameter sets considered the
channel (a) dominates in the NN → NNφ reaction, but
the interferences are different for different parameter sets.

One can see a qualitative difference in πN and NN
reactions for the set C. In the πN reaction the direct ra-
diation channel (b) is dominant, i.e. σ(b) > σ(a). In con-
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Fig. 5. The angular distribution dσ/dΩ for NN → NNφ reactions for parameter set B for pp (left panel; data from [10] with
normalization according to [11]) and pn (right panel) interactions

Fig. 6. The same as in Fig. 5, but for parameter set C

trast, in the NN reaction the relative contribution of the
direct emission channel (b) increases considerably as com-
pared with sets A and B, but it is still smaller that the
meson exchange channel (a). The reason for this differ-
ence is the following one. The direct emission (b) in the
reaction πN consists of the two competing u-channel and
s-channel diagrams shown in Fig. 1b. which add destruc-
tively, while the contribution of the u-channel amplitude is
greater. However, the corresponding contributions of the
two competing diagrams in Fig. 2b are numerically nearly
the same resulting in a stronger suppression of the direct
channel (b).

As we have adjusted our parameters by the data, it
is clear that they describe the data with approximately
equal quality, and at the present level of the data accuracy
it is difficult to give a preference to one of them. There-
fore, we now investigate whether other observables can
be used to constrain the parameters further and whether
the difference between pp and pn reactions is a sensible
measure.

4.2 π−p→ nφ reaction

The calculated angular differential cross sections of the
π−p → nφ reaction at ∆s

1
2 = 50 MeV and for the pa-

rameter sets A, B, C are shown in Fig. 7. One can see
that the shapes of the distributions for the sets A and B
are very similar to each other. They are quite smooth and
close to the distribution of the meson exchange channel
(a). Only in the backward direction the total cross section
slightly decreases due to the destructive interference with
the direct channel (b), leading to some enhancement of
the cross section in forward direction. (We would like to
mention here, that the extrapolated value of the φ produc-
tion cross section in NN reactions [16] from the data [10]
would require somewhat different parameter sets, which
in turn cause also more pronounced differences between
the sets A and B.) Contrary to that, for the model C the
largest destructive interference appears at forward direc-
tion, where the contributions of the two competing chan-
nels (a) and (b) are close to each other. As a result, the
cross section is enhanced in the backward direction. So we
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Fig. 7. The differential cross sections for the π−p→ nφ reaction at ∆s
1
2 = 50 MeV for the same parameter sets as in Fig. 4

Fig. 8. The spin density matrix elements ρ00 (left panel) and ρ11 (right panel) for the different parameter sets at ∆s
1
2 = 50

MeV

can conclude that the differential cross section is sensitive
to the dynamics of the φ production and the direct φNN
coupling (a similar conclusion for ω production has been
arrived at in [26]).

The prediction for the spin density matrix elements
ρ00 and ρ11 for the different parameter sets is shown in
Fig. 8 as a function of the φ production angle in c.m.s. at
∆s

1
2 = 50 MeV. The sets A and B deliver standard values,

typical for the spin-flip processes, i.e. ρ00 ' 0, ρ11 ' 0.5.
But the parameter set C predicts a strong deviation from
these values, especially in forward direction. The reason of
this effect is the following. In the meson exchange channel
(a) the nucleon spin-flip amplitudes result in transitions
mi → mφ,mf , where mf = mi −mφ with mφ = ±1. For
instance, the transitions like − 1

2 → −1, 1
2 are dominant. In

the direct radiation channel (b) together with this strong
amplitudes we have finite amplitudes for the transition
mi → 0,mf , where mf = mi. In the set C the strongly
competing nucleon spin flip amplitudes cancel each other
and only the nucleon spin conserving direct emission am-
plitude (b) survives. This is illustrated in Fig. 9, where
we show the nucleon spin flip (left panel) and the nucleon
spin conserving (right panel) amplitudes for the set C.
Here Fz = ImTπp→nφ with the quantization axis along
the z direction (Tπp→nφ is purely imaginary).

The anisotropies of the decay channels φ→ e+e− and
φ → K+K− (cf. (5, 6) for the different parameter sets
are shown in Fig. 10. Again, one can see a strong devi-

ation of our prediction for the set C from the naive ex-
pectation Be

+e− ' 1, BK
+K− ' −1 based on a purely

mesonic exchange channel or on the sets A and B. Fig. 11
illustrates the the manifestation of this deviation in the
real e+e− and K+K− angular distributions. The distrib-
utions WL and WT are the longitudinal (along the quan-
tization axis) and transversal fluxes for the outgoing elec-
trons or kaons. The functions WL and WT are normalized
as
∫ √

W 2
L(Θ) +W 2

T (Θ)d cosΘ = 1, where Θ is defined
by (5). Thus, one can see that the sets A and B predict
a practically vanishing kaon flux in the longitudinal di-
rection for all φ production angles. The set C predicts a
finite amount of the longitudinal flux which increases with
decreasing φ production angle in c.m.s. A corresponding
modification is predicted for the electron flux too.

4.3 pp→ ppφ and pn→ pnφ reactions

As shown in Figs. 5 and 6 the meson exchange contri-
bution (a) is the dominating contribution to the NN →
NNφ reaction, therefore, it is useful to recall the thresh-
old prediction for this channel in the absence of the final
state interaction, which serves as a starting point for fur-
ther calculations at finite energy. Adopting the notation
of [17] we can express the invariant amplitudes of the re-
action a+b→ a+b+φ with a = p, b = p or n as following

Tpp = F1, Tpn =
1
2

(F0 + F1) , (27)
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Fig. 9. The nucleon spin flip (left panel) and spin conserving (right panel) amplitudes Fz for the parameter set C

Fig. 10. The anisotropies in the reactions φ→ e+e− (left panel) and φ→ K+K− (right panel) for different parameter sets

Fig. 11. The longitudinal (WL) and transversal (WT ) fluxes of the outgoing electrons (left panel) or kaons (right panel) for
various values of the anisotropies

where F0 (F1) is the initial singlet (triplet) amplitude with

F0 = f0(−1)
1
2 +ma δ−mamb(δ 1

2mc
δ 1

2md
− δ− 1

2mc
δ− 1

2md
),

F1 = f1(−1)
1
2 +ma δmamb(δ 1

2mc
δ− 1

2md
− δ− 1

2mc
δ 1

2md
),(28)

wherema,b andmc,d are again the nucleon spin projections
in the initial and final states, respectively, f0 = 6

√
2T0,

f1 = 2
√

2T0, where the threshold amplitude T0 is de-
fined by (25) in [9]. The above equations lead to the ratio

f0/f1 = 3 and to the ratio of singlet to triplet cross sec-
tions

|F0|2
|F1|2

= 9. (29)

The beam target asymmetries (8) read CBT pp = 1, and
CBT pn = −0.8. The ratio of the total cross sections in pn
and pp reactions is 5. Accordingly, the prediction for the
spin density [17] reads ρ00 = 0, ρ11 = 0.5.
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Fig. 12. The energy dependence of the total cross sections of pp → ppφ (left panel) and pn → pnφ (right panel) reactions for
the parameter set B. Data from [11]

Fig. 13. The same as in Fig. 12, but for the parameter set C

Let us now turn back to the Figs. 5 and 6. These fig-
ures show (i) a relatively small contribution of the direct
radiation channel (b), which is in agreement with previous
works [9,15], (ii) the cross sections for the pn interaction
are qualitatively very similar in shape to these of the pp
interaction but they are larger, and (iii) the ratio of the
corresponding cross sections in pn and pp reactions is dif-
ferent for the sets A (or B) and C. Below we discuss this
aspect in more detail.

The energy dependence of the total cross sections of
pp → ppφ and pn → pnφ reactions for the sets B and C
is shown in Figs. 12 and 13. We do not display the result
for the set A because it is practically the same as for the
set B. The experimental data is taken from [11]. One can
see that the direct radiation channel (b) is much indeed
smaller than the meson exchange contribution (a) in the
near-threshold region where our consideration is valid.

Figure 14 shows the energy dependence of the ratio of
the total cross sections of pp → ppφ and pn → pnφ re-
actions for the different parameter sets. One can see that
this ratio increases with the energy excess and differs from
the threshold value 5 in case of absence of FSI. The FSI
is greater in the triplet initial (or singlet final) states and

Fig. 14. The energy dependence of the ratio of the total cross
sections of pp → ppφ and pn → pnφ reactions for different
parameter sets

reduces the contribution of the initial singlet state in the
pn interaction. For the set C the ratio σpn/σpp is greater
because of the relatively greater contribution of the initial
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Fig. 15. The energy dependence of the ratio of the initial singlet to triplet cross sections in pn interaction for separate channels
(left panel) and for different parameter sets (right panel)

Fig. 16. The beam target asymmetry for separate channels for pp (left panel) and pn (right panel) interactions

triplet state in the meson exchange channel (a). Figure 15
shows the energy dependence of the ratio of the singlet to
triplet cross sections in pn interactions (cf. (29)). The left
panel shows this ratio for the separate channels, while on
the right panel one can see our prediction for this ratio for
the different parameters sets. One can again see a strong
deviation from the threshold prediction (29) without FSI
and a non-trivial non-monotonic dependence of these ra-
tios with some maximum values around ∆s

1
2 ∼ 20 MeV.

Figure 16 shows beam target asymmetry (8) for the
separate channels for pp and pn interactions. For the pp
interaction it coincides with its threshold value CBT = 1
up to a relatively large energy excess. For the pn interac-
tion the asymmetry is different for the different channels
which reflects the different role of the singlet and triplet
states in the different amplitudes which are additionally
modified by the FSI.

The total asymmetry for the different parameter sets
is shown in Fig. 17. It is interesting that even for the
sets A and B with small contribution of the direct ra-

diation amplitude (b) the asymmetry for pn interaction
strongly deviates from the threshold prediction (with-
out FSI: CpnBT = −0.8), displaying a minimum around
∆s

1
2 ∼ 20 MeV.
We do not display here our results for the spin density

matrix elements because for the sets A, B and C we get
almost the threshold values, i.e. ρ00 = 0, ρ11 = 0.5, which
reflects the dominance of the meson exchange channel (a).

5 Summary

We have analyzed the φ production in πN and NN inter-
actions in the near-threshold region using the conventional
“non-strange” hadron dynamics, based on the amplitudes
allowed by non-ideal ω − φ mixing, that is meson con-
version in a φπρ vertex and direct φ emission from the
nucleon legs by a direct φNN coupling. Using the lim-
ited body of available experimental data of the total un-
polarized reactions we have tried to reduce as much as
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Fig. 17. The same as in Fig. 15 but for different parameters sets

possible the uncertainties of the model parameters. As a
result we get two branches of solutions with either a rela-
tively small or a relatively large contribution of the direct
emission channel which is determined by the strength of
the φNN interaction. By making use of these solutions
we have compared various parameter sets with different
strengths of the direct φNN interaction.

Analyzing the πp → nφ reaction we find a strong de-
pendence of the various observables on the strength of
the φNN interaction. The study of the differential cross
section and angular distributions of electrons and kaons
in the φ → e+e− and φ → K+K− decays seems to be
most promising in investigating the φNN dynamics. Ex-
perimentally, this study might be performed with the pion
beam at the HADES spectrometer in GSI/Darmstadt.

Analyzing the NN → NNφ reaction we find a large
difference in pp and pn reactions due to the different role of
the singlet and triplet nucleon spin states in the entrance
channel and strong final state interaction. We predict a
non-monotonic energy dependence of the ratio σpn/σpp
and of the beam target asymmetry for the pn interaction
which deviates strongly from the pure threshold predic-
tion.

Finally, we emphasize once more that the present
investigation is completely based on the conventional
meson-nucleon dynamics and, therefore, our predictions
may be considered as a necessary background for forth-
coming studies of the strangeness degrees of freedom in
non-strange hadrons. Additionally we would like to men-
tion that fixing the φNN coupling is important for an
access to the elastic φN scattering cross section which de-
termines the degree of thermalization and collective flow
properties of the φ mesons in heavy-ion collisions at SIS
energies.
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bowski, L.P. Kaptari, N. Kaiser, R. Kotte, J. Ritman, and
V.V. Shklyar. One of the authors (A.I.T.) thanks for the
warm hospitality of the nuclear theory group in the Research
Center Rossendorf. This work is supported by BMBF grant

06DR829/1, Heisenberg-Landau program, and HADES-JINR
participation project #03-1-1020-95/2002.

Appendix

In this appendix we present the formulae for the FSI
and corresponding correction factors. We use the general
framework for the FSI enhancement factor based on the
Jost function formalism. Important aspects of this frame-
work are described in the monograph by Gillespie [27] and
some early original papers [28]. With respect to the signif-
icance of this problem in studying various near-threshold
particle production reactions in the present time with
cooled beams, we accumulate here the relevant expres-
sions of this method and give the final result in a form
convenient for specific calculations. For the Jost function
formalism we use the notation of the textbook by Newton
[29]. For simplicity, we limit our consideration to the s-
wave interaction which is dominant in the near-threshold
region. A generalization for higher angular momenta may
be done straightforwardly.

The FSI enhancement factor for two identical particles
with momentum k in their c.m.s. reads

I =
1

J+(k)
, (A1)

where J+ belongs to a set of functions J±(k) which are de-
fined through the Wronskian of two linearly independent
solutions of the Schrödinger equation,

J±(k) = f±(k, r)ϕ′(k, r)− f ′±(k, r)ϕ(k, r), (A2)

where the prime means here the derivative with respect
to r. The function J= J+ is called the Jost function. The
integral equations for the regular and irregular functions
ϕ(k, r) and f±(k, r) have the standard form

ϕ(k, r)=
sin kr
k

+
1
k

∫ ∞
0

dr′ sin k(r − r′)V (r′)f±(k, r′),

f±(k, r)=e±kr− 1
k

∫ ∞
0

dr′ sin k(r − r′)V (r′)f±(k, r′).(A3)
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(A2) and the boundary conditions ϕ(0) = 0, ϕ′(0) = 1
show that J±(k) = f+(k, 0), thus allowing the integral
representation

J (k) = 1 +
1
k

∫ ∞
0

dr sin krV (r)f+(k, r). (A4)

The physical wave function ψ+(k, r) is related to the reg-
ular function ϕ(k, r) as

ψ+(k, r) =
kϕ(k, r)
J (k)

, (A5)

which means that the inverse of the square of the modulus
of J (k) measures the probability of finding the particles
near r = 0, relative to a situation without interaction.
¿From (A4) one can find the important asymptotic con-
dition

lim
|k|→∞

J = 1, (A6)

which shows that at high energies the enhancement tends
to unity, thus leaving the total amplitude unchanged.

The analyticity of J together with the asymptotic con-
dition (A6) leads to the integral representation of the Jost
function in terms of the phase shift δ(k)

J (k) =
∏
n

(
1 +

κ2
n

k2

)
exp

[
1
π

∫ ∞
−∞

dk′
δ(k′)

k − k′ + iε

]
, (A7)

where κn is related to the binding energies εn by κ2
n =

−2µεn > 0 if bound states appear; µ is the corresponding
reduced mass.

For the practical usage of the above formalism it is
convenient to work with the effective potentials which give
an exact analytical expression for the phase shift. Let us
first consider the singlet NN scattering (without bound
state). The Eckart potential

V (r) = − 8α2

α2 − β2

(
e−αr

α− β +
eαr

α+ β

)−2

, α > 0, β > 0,(A8)

gives the s-wave phase shift

k cot δ0 =
αβ

α− β +
k2

α− β (A9)

reproducing the effective-range phase shift exactly,

k cot δ0 = − 1
a0

+
1
2
r0k

2, (A10)

with

α =
1
r0

(√
1− 2r0a

−1
0 + 1

)
,

β =
1
r0

(√
1− 2r0a

−1
0 − 1

)
. (A11)

The insertion of δ0 from (A9),

δ0 =
i

2
ln
[

(k − iα)(k + iβ)
(k + iα)(k − iβ)

]
, (A12)

Fig. 18. The effect of FSI for different enhancement factors
for the parameter set B in the reaction pp→ ppφ. Notation is
explained in the text

in (A7) gives the analytical expression for the Jost func-
tion

J (k) =
k + iβ

k + iα
, (A13)

and the resulting enhancement factor for singlet interac-
tion reads therefore as

I0(k) = C0(k2)
sin δ0 eiδ0

k
,

C0(k2) =
k2 + α2

α− β (A14)

=
(kr0)2 + 2

(
1− r0a

−1
0 +

√
1− 2r0a

−1
0

)
2r0

,

which coincides with the classical Watson enhancement
factor [30]

IW (k) = CW
sin δ0 eiδ0

k
(A15)

in the limit of kr0 → 0. Note that the expression (A15)
is commonly used in calculations of the FSI in the near-
threshold region (cf. [31]), where the constant CW is fixed
by a comparison of calculation and experimental data.
(A14) is superior to (A15) because it yields a definite value
of CW = C0(k2 = 0) by making use of the independent
phase shift data and satisfies at the same time the required
asymptotic behavior according to (A6),

lim
|k|→∞

I0(k) = 1, (A16)

contrary to (A15), where IW (k)→ 0 at |k| → ∞.
Figure 18 illustrates the effect of FSI when using dif-

ferent enhancement factors for our parameter set B for
the reaction pp→ ppφ, where we keep here only the dom-
inant mesonic exchange diagram in Fig. 2a and use the
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threshold value. In this case the energy dependence comes
only from the enhancement factor and the phase space
volume. The cross section calculated with enhancement
factors from (A14) and (A15) with CW = C0(0) are shown
by the dashed and the solid lines, respectively. For com-
parison we show also the cross section calculated without
FSI (dot-dashed line). One can see, that the difference be-
tween the two factors (A14) and (A15) is indeed negligible
at sufficiently small energy excess, say at ∆s

1
2 < 10 MeV

with kr0 ¿ 1, where the Watson theory [30] is valid, thus
supporting the approach of [31]. At ∆s

1
2 > 50 MeV the

difference between the two variants results in a factor 2
and greater.

Following [29], for the triplet pn interaction one can
use the effective potential of the Bargmann type

V (r) = −4κ
d

dr

[
shα1r

g(κ, r)
g(κ+ α1, r)− g(κ− α1, r)

]
,

g(q, r) =
(
e−qr + 2sh qr

)
k−1 (A17)

which reproduces the known phase shift and the deuteron
binding energy. The Jost function in this case reads

J (k) =
k − iκ
k + iα1

, (A18)

with

α1 = (2− κr1)r−1
1 , (A19)

where κ2 = 2µεd, εd is the deuteron binding energy, and r1

and a1 = (κ(1 − κr/2))−1 are the triplet effective radius
and scattering length, respectively. The triplet enhance-
ment factor reads explicitly

I1(k) = C1(k2)
sin δ1 eiδ1

k
,

C1(k2) =
k2 + α2

1

α1 + κ
(A20)

=
(kr1)2 + 2

(
1− r1a

−1
1 +

√
1− 2r1a

−1
1

)
2r1

.

In our calculation we use a0,1 and r0,1 from [33]

pn singlet : a0pn = −23.768 fm, r0pn = 2.75 fm,
pp singlet : a0pp = −7.8098 fm, r0pp = 2.767 fm,
pn triplet : a1pn = 5.424 fm, r1pn = 1.759 fm,

κ−1 = 4.318 fm. (A21)

Finally, we would like to mention that the approach
presented here is equivalent to the approach in [32] if the
off-shell correction factor P (cf. (9) in [32]) takes the form
P(E, k) = −axr−1

x

(
1 +

√
1− 2rxa−1

x

)
with x = 0, 1.
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